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Ⅰ. Introduction

The blood glucose concentration in the human body

typically represents the amount of glucose present in

the blood. The human body regulates blood glucose

concentrations with the goal of maintaining adequate

levels, that is, sufficient glucose to fuel the cells but

not excessive enough to place an undue burden on

the blood circulation system. Diabetes mellitus (DM)

is a serious disease affecting more than 422 million

people worldwide and causes high blood glucose

levels when not properly treated. According to the

American Diabetes Association[1], based on the

blood-glucose concentration present in the human

body, health status can be categorized into three types:

normal, pre-diabetes, and diabetes. The blood glucose
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ABSTRACT

Noninvasive measurement of blood-glucose concentration can reduce both pain and complications associated

with piercing the human fingertip to collect blood. Photoplethysmography (PPG) is a helpful technique that can

be used to measure blood-glucose concentration without a blood sample. To facilitate such noninvasive in-vivo

estimation, we propose a model based on the Beer-Lambert law for measuring blood-glucose concentration

using the PPG signal. Notably, only two wavelengths are used. First, the oxygen saturation (SpO2) is

estimated from the ratio of absorbance at two wavelengths, then another absorbance ratio is presented, and the

blood-glucose concentration is estimated by substituting the SpO2 estimated earlier to this ratio. The PPG

signals from 40 subjects were collected along with their reference blood-glucose concentrations and SpO2

values. The PPG-based blood-glucose concentrations are then calculated using mathematical equations derived

from the Beer-Lambert law. A supervised machine learning model, XGBoost, is applied to calibrate the

estimation model with the reference values measured using a commercial device; according to our experimental

results, the Pearson correlation coefficient (Pearson’s r) value is 0.85. The proposed model based on the

Beer-Lambert law thus provides a method for in-vivo estimation of blood glucose in daily applications.
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concentration test can be performed in two states:

fasting state (fasting means not having anything to eat

or drink except water for at least 8 h before the test)

and post-meal state (blood-glucose concentration two

hours after meals). In the fasting state, blood glucose

concentrations less than 100 mg/dL are considered

normal. If it ranges from 100 mg/dL to 125 mg/dL,

it is considered prediabetic. For diabetes, the blood

glucose concentration was > 126 mg/dL. Therefore,

the continuous measurement of blood glucose

concentration is an essential approach that allows

people to plan healthy lifestyles. However, invasive

blood glucose concentration measurements not only

aggravate the pain of individuals but also create a

burden on them[2]. Nevertheless, noninvasive blood

glucose testing frameworks for self-monitoring are

still in the early stages of improvement and are still

far from being purposed for at-home usage.

Photoplethysmography (PPG) signals are used to

estimate blood flow in the skin using light.

Traditionally, oxygen saturation (SpO2), blood

pressure, and cardiac output have been used to assess

autonomic functions. Over the past few decades, PPG

signals have been applied in various clinical

assessments, like monitoring blood oxygen saturation,

blood pressure, heart rate variability, and glucose

levels. PPG can be used to estimate blood pressure

using biometric parameters such as body mass index

(BMI), height, and age[3]. The heart rate is an

important variable for measuring a wide range of

physiological parameters. The AC component of the

PPG signal can be coordinated with the pulsating heart

rate and becomes a source of heart rate information[4].

Quantitative parameters, like blood glucose

concentration, can also be detected from PPG signals.

Monte Moreno et al.[5] used various physiological

parameters such as heart rate, vascular compliance,

blood viscosity, and respiratory frequency to analyze

PPG waveforms and subsequently estimate blood

glucose. Support vector machine (SVM), random

forest, linear regression, and neural network classifiers

have been used for glucose classification, among

which random forest performs the best, with an R2

value of 0.9. In [6], a noninvasive blood glucose

monitoring system based on PPG signal processing

and a machine-learning algorithm was proposed. PPG

signals were extracted from videos of the index finger.

To remove baseline drift, a four-sliding-window

(FSW) pattern-matching algorithm was developed,

and 28 time-domain and frequency-domain features

were extracted using the Gaussian fitting method.

Eventually, the blood glucose concentrations were

classified into three groups―normal, borderline, and

warning levels―using a machine learning algorithm,

such that the 28 extracted features were effective in

separating the glucose concentrations. Hossain et al.[7]

developed a system based on a convolutional neural

network (CNN) to measure blood glucose

noninvasively using PPG signals and created a dataset

of PPG signals and blood glucose concentrations from

30 subjects. The Pearson correlation coefficient of

their regression analysis was 0.95 for estimating

glucose concentration. Tsai et al.[8] utilized Glutrac,

a health device, to obtain PPG signals from the fingers

and wrists, which were then sent to a NoSQL

database. After filtering the signals, 30 time-domain

features were extracted, and the first derivative was

obtained. Multiple decision trees were used in the data

learning investigation, and the accuracy of the model

was 80%. Furthermore, Gupta et al.[9] developed a

device to record PPG signals in both transmission and

reflectance modes. Seventeen features were extracted

from the filtered signals and used to establish their

relationship with blood glucose concentration. The

maximum Pearson’s correlation coefficient for this

methodology was 0.94. In [10], PPG signals were

collected at different wavelengths using wearable

biosensors and the baseline drifts of the signals were

removed using a digital wavelet transform along with

wavelet decomposition. Then, 24 features were

extracted from each periodic signal by applying the

local maxima algorithm for peak signal detection; a

total of 12 subjects participated in this experiment.

Ten-fold cross-validation was used to evaluate the

linear partial least-squares, multivariate-based

calibration model. The correlation coefficient for this

experiment was 0.86. Recently, wearable devices have

emerged as a promising method for collecting PPG

signals and using them for further processing. Banik

et al.[11] developed a wearable device to collect PPG
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signals and measure the heart rate and SpO2 values.

The authors in [12] derived a mathematical model

based on the Beer-Lambert law to estimate HbA1c

using digital volume pulse signals, that is PPG.

Moreover, in our recent study[13], we estimated the

blood glucose concentration noninvasively using

Monte Carlo simulation (MCS), wherein MCS-based

photon propagation in a finger model was used to

estimate the blood glucose concentration.

Beer-Lambert law defines the linear relationship

between the absorbance and molar concentration,

molar absorption coefficient, and the optical path of

a substance or solution. According to this law, if light

passes through a substance or solution, then the

absorbance can be defined using the molar absorption

coefficient, molar concentration, and optical path

length of the light that traverses the solution. There

are two types of PPG signals based on the placement

of the light source and the PD. If the light source

and PD are placed on the same side, they are

considered to be reflectance-type PPG signals, and if

the light source and PD are placed on opposite sides,

they are considered to be transmission-type signals[14].

Therefore, for a transmission-type PPG signal, if the

signal measurement site is considered to be a

substance, then the absorbance of the substance can

be defined by the Beer-Lambert law.

To design a system to measure blood glucose

concentrations as a point-of-care monitoring tool, this

study proposes a Beer-Lambert-law-based model for

noninvasive in vivo estimation of blood glucose

concentration using PPG signals. The PPG signals

were recorded from 40 volunteers at two LED

wavelengths: 950 nm (infrared) and 660 nm (red). In

addition to the PPG signals of the subjects, their SpO2

and blood glucose concentrations were measured as

references using typical clinical devices. The raw PPG

signals were filtered appropriately, and the filtered

signals were used to calculate the ratios for estimating

blood glucose concentrations. Thereafter, a supervised

machine-learning algorithm, XGBoost, was used to

calibrate the estimated concentration using the

reference, and the model performance was listed

accordingly. The application of our current study can

alleviate the patient burden of checking blood glucose

concentration with finger pricking upon the use of this

method on a daily basis.

The remainder of this paper is organized as follows:

the methodology, including derivation of the

mathematical equations, data acquisition,

preprocessing stages, and calibration, is described in

Section 2. In Section 3, the results of the blood

glucose concentration estimations are described.

Finally, a discussion of this work and the conclusions

are presented in Sections 4 and 5, respectively.

Ⅱ. Methodology

The workflow diagram of this study is as shown

in Fig. 1.

2.1 Beer-Lambert-Law-Based Model
The Beer-Lambert law specifies the attenuation of

light through the sample it travels. In most cases, the

Beer-Lambert law is suitable for quantifying the

concentrations of compounds remaining in the

Fig. 1. Workflow diagram of this study.
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samples. Accordingly, light attenuation is directly

proportional to the concentration of residual

compounds in the sample[15]. The practical expression

of the Beer-Lambert law is given by (1).

(1)

where A is the total absorption, e is is the molar

attenuation coefficient or absorptivity of the

attenuating species (L·mol-1·cm-1), c is the

concentration of the attenuating species (mol·cm-1),

and d is the optical path length (cm). Equation (1)

can also be expressed in terms of the incident light

intensity of the sample and light intensity transmitted

through the sample.

(2)

where I0 is the intensity of the incident light on the

sample and I is the intensity of the light transmitted

through the sample.

Considering equation (1), blood can be defined as

a homogeneous solution of hemoglobin and glucose.

Hence, the total absorption coefficient at wavelength

l can be formulated as:

(3)

where eHbO(l), eHHb(l), and eG(l) are the molar

absorption coefficients at wavelength l for HbO

(oxygenated hemoglobin), HHb (deoxygenated

hemoglobin), and glucose, respectively; c represents

the molar concentration of each element, and d is the

distance traveled by light.

In our model, blood is represented as a

homogeneous solution of hemoglobin consisting of

oxygenated hemoglobin (HbO), deoxygenated

hemoglobin (HHb), and glucose. Hence, the%SpO2

can be described as follows:

(4)

where cHbO and cHHb represent the molar

concentrations of HbO and HHb, respectively. Blood

oxygen saturation (SpO2) is related to oxygen-bonded

hemoglobin[16], but other substances present in the

blood are not. Thus, the right-hand side of (4) did

not contain any substances other than HbO or HHb.

The partial molar concentrations of HbO, HHb, and

glucose are expressed as PHbO, PHHb, and PG,

respectively, as follows:

(5)

(6)

(7)

(8)

From (5) - (7),

(9)

Using the partial molar concentrations (PHbO and

PHHb), (4) can be expressed as

(10)

According to the blood vessel model explained in

[12], the diameter of the vessel expands when blood

enters the vessel (systolic phase) and decreases when

blood flows out from the vessel (diastolic phase).

Considering this model, the difference between the

two states (i.e., when blood enters and flows out of

the vessel) of light traversal in the finger can be

obtained in the form of the Beer-Lambert law, as

shown in (11).

(11)

where DA= A1 - A2, Dd = d1 - d2 ; A1 represents the

absorbance when blood enters the vessel, and A2
represents the absorbance when the blood flows out

from the vessel. Variables d1 and d2 represent the

diameters of the blood as it enters and leaves the

vessel, respectively.
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By replacing cHbO, cHHb and cG with their partial

concentration values, and eliminating PHHb using (9),

we can rewrite (11) as follows:

(12)

For the two wavelengths considered in this study

(i.e., l1= 950 nm and l2 = 660 nm), (12) can be

expressed as

(13)

(14)

From (13) and (14), a ratio equation can be

obtained and used to estimate unknown parameter

PG. The ratio equation is expressed as

(15)

Equations (13) and (14) can be expressed in the

form of (2) as follows:

(16)

(17)

Now, (15) can be expressed by combining (16) and

(17); thus, the ratio can be calculated directly from

the light received from the fingertip.

(18)

The molar absorption coefficients of HbO, HHb,

and glucose at two different wavelengths (660 and 950

nm) are listed in Table 1. The molar absorption

coefficients of HbO and HHb were obtained from [17]

and that of glucose was obtained from [18].

Using the molar absorption coefficient values,

Equation (15) can be expressed as follows:

(19)

The PHbO can be obtained using (9) and (10) as

(20)

By substituting (20) into (19),

In (21), there are two unknowns, namely PG and

SpO2. R can be calculated using (18). By substituting

the SpO2 obtained from section 2.2 (or from

reference), the value of PG can be finally obtained.

Therefore, the final equation of PG can be expressed

using (21) as follows:

Substance
Molar absorption coefficient (cm-1·M-1)

l1 = 950 nm l2 = 660 nm

Glucose (eG) 0.001 0.0002

HbO (eHbO) 1204 319.6

HHb (eHHb) 602.24 3226.56

Table 1. Molar absorption coefficients.

(21)

(22)
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From (7) and (8), we have

(23)

where cT = 150/64500 mol·dm-3 [12,19,20]. The

value of cT typically represents the molar

concentration of whole blood and is used to calculate

the blood glucose concentration.

After obtaining the desired values of PG using both

SPO2 values from Section 2.2, and the reference SPO2

separately, the blood-glucose concentration can be

determined using (23). In both cases, the accuracy of

the calculation of blood glucose concentration was

compared and analyzed in the Results section.

2.2 SpO2 Calculation
To calculate SpO2 values from the PPG signals,

we followed the method described in [21]. The ratio

RSpO2 was calculated from the ratio of the normalized

intensity of the received infrared light ( ) to red

light ( ) and is expressed as (24).

(24)

As light passes through the additional optical path

Dd at systole, from (11), it can be written as

(25)

The normalized intensity of the received light at

a wavelength l can be expressed as

(26)

where I represents the light intensity received by the

photodetector (PD), and represents the highest

intensity during diastole.

The absorbance at wavelength l can be found using

the concentrations of oxyhemoglobin and

deoxyhemoglobin as follows:

(27)

Now, (23) can be expressed as

(28)

Finally, the oxygen saturation (SpO2) can be

calculated as

(29)

The values depicted in Fig. 2(a) were used for SpO2

to obtain the desired PG value of PG from Equation

(22).

2.3 Data Acquisition and Preprocessing
Our model was derived from the Beer-Lambert

law, and states that the PPG signal should be

transmissive. The finger is one of the best

(a) (b)

Fig. 2. SpO2 vs. ratio values (a) from [21] and (b) from our study (No. of subjects=40).
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measurement sites for obtaining PPG waveforms[22].

Therefore, for transmissive PPG signal acquisition, the

light source and sensor should be positioned on the

opposite sides of the finger. In this case, high-intensity

light is required to acquire high-quality PPG signals.

To collect the transmissive-mode PPG signals for our

model, a hardware system was developed using

ESP32-PICO-V3 as the processing unit. This

microcontroller was designed with an on-chip radio

frequency (RF) communication system that eliminates

the need for an external communication module to

transmit data to a remote server. The SFH 7050 is

a surface-mounted device (SMD) module containing

three different LED wavelengths, namely green (525

nm), red (660 nm), and infrared (950 nm), along with

a PD to collect transmissive-mode PPG signals from

subjects. A biosensing analog front end (AFE), AFE

4404, was used to control the system. Fig. 3 shows

a block diagram of the proposed hardware system.

To collect real PPG signals, 40 participants

voluntarily agreed to provide their PPG signals.

Written informed consent was obtained from the

volunteers if they agreed to provide data for this study

according to the Kookmin University IRB protocol.

The volunteers were checked for severe disease within

one month or irregular heart rate. They were excluded

from the study if they had any of those two criteria.

Of the 40 participants, 29 were male and 11 were

female. Among the subjects, 22 were healthy and the

remaining 18 were diabetic. Table 2 lists the statistical

information of the participants’ data. Statistical

information includes the minimum (min), maximum

(max), mean, and standard deviation (SD) of the data.

For each subject, 240 s PPG signals were recorded

at a sampling rate of 83 Hz. Because we developed

our model for two LED wavelengths (950 and 660

nm), PPG signals recorded at infrared and red

wavelengths were considered.

We also measured the blood glucose concentrations

and SpO2 values of the subjects using a CareSens II

Plus system[23] and a Schiller Argus OXM Plus device
[24] as a reference. The system accuracy results for

the CareSens II Plus device were advertised as 99.7%

within ± 15 mg/dL for blood glucose concentrations

between 29.5 mg/dL and 455 mg/dL, and the stated

accuracy for the Schiller Argus OXM Plus device was

± 2%, ranging from 70% to 100%. The subjects were

instructed to remain stationary while recording the

PPG signal to avoid external influences, such as

movement and electromagnetic disturbances. Written

consent was obtained from the participants for

collection of blood glucose concentrations using an

invasive device. Because we considered obtaining

fasting blood glucose concentrations from the

subjects, the subjects were asked not to eat for at least

Fig. 3. Block diagram of the developed hardware system.

Parameter Age [years] BMI

Min 25 20.8

Max 80 33.4

Mean 43.5 29.25

SD 18.6 2.76

Table 2. Statistical information of the subjects’ data.
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8 h before testing. We took the necessary precautions

to collect blood glucose concentration data and strictly

followed the instructions provided in the device

manual to measure blood glucose concentration. Fig.

4 depicts an example of the PPG signals recorded

from a subject, and Fig. 5 shows a histogram of the

measured SpO2 and blood glucose concentrations of

the subjects.

In the preprocessing stage, the PPG signals pass

through several steps. To retain only the PPG signal,

the high- and low-frequency noise, as well as the

baseline drift, must be removed. The fitting-based

sliding window (FSW) algorithm[6], which is

convenient for detecting valleys, was implemented to

remove baseline drift from PPG signals. A

second-order low-pass Butterworth filter with a cutoff

frequency of 8 Hz was used to remove high-frequency

noise from the signals.

Using the filtered PPG signals, the ratio was

calculated using Equation (18) for each participant.

After calculating the PG value of PG using equation

(22), the blood glucose concentration (cg) was

calculated using equation (23) for each value of PG.

The units of the calculated blood-glucose

concentrations (cg) are in mmol·L-1. To prepare the

blood-glucose concentrations for calibration, they are

converted to units of mg·dL-1 using (30).

(30)

2.4 Calibration
A calibration step is required to derive more

accurate estimates of blood glucose concentrations

from (23). Calibration was performed on the

calculated blood glucose concentrations by setting the

measured concentrations as targets. A supervised

machine learning model, XGBoost, with a learning

rate of 0.3, maximum depth of six, and 100 estimators,

was used for calibration. Leave-one-out cross

validation (LOOCV) was performed to evaluate the

(a) (b)

Fig. 4. Examples of recorded PPG signals from a subject at (a) infrared and (b) red wavelengths.

(a) (b)
Fig. 5. Histograms of measured (a) SpO2 and (b) blood-glucose concentration values.
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calibration results. LOOCV is a unique case of cross

validation in which the number of folds depends on

the number of instances in the training dataset. As

our study focuses on estimating blood glucose

concentrations from PPG signals using the

Beer-Lambert-based model, implementing LOOCV in

the regression will provide a reliable and unbiased

estimate of model performance. While implementing

LOOCV, 5% of the test data was used as the training

set for the personalized regression model. This 5%

of the data roughly corresponds to 114 PPG signal

data samples per subject (approximately 1.4 seconds

of PPG signal data). In [25], obtaining a personalized

regression model using a percentage of the test data

was considered an important step. We used the 1%,

2%, 3%, and 4% test data to determine the best

results. Fig. 6 shows a block diagram of the

calibration process using XGBoost.

To evaluate the performance of the

Beer-Lambert-law-based model in estimating blood

glucose concentrations, three evaluation metrics were

considered: the mean absolute error (MAE), root

mean-squared error (RMSE), and Pearson correlation

coefficient (Pearson’s r). Clark error grid analysis

(EGA)[26] and Bland–Altman plots were used to

visualize the clinical accuracies of the estimated

concentrations and estimation errors.

Ⅲ. Results

In this section, we present the evaluation of the

proposed model compared with the reference data

recorded from the volunteers for the considered

evaluation metrics, EGA plots, and Bland–Altman

analyses. In the proposed model, we estimated the

blood glucose concentration using mathematical

equations derived from the Beer-Lambert law, using

the estimated SpO2 values obtained from Section 2.2.

To analyze the performance of the proposed model,

we used the reference SpO2 values to replace the

estimated values when calculating the blood glucose

concentrations. This analysis clearly depicts the

comparable results produced by the proposed model.

Finally, our model was compared with those in related

studies to better illustrate its effectiveness. The

following subsections present the results.

3.1 Estimation of Blood-Glucose 
Concentration using Estimated SpO2

The following results were obtained after

calculating the blood glucose concentration using

equations (21)-(23): To calculate the blood glucose

concentration, we used the SpO2 values calculated in

Section 2.2. Fig. 7(a) depicts the fitted scatter plot

after the calibration of the calculated blood glucose

concentrations using XGBoost, and Fig. 7(b)

illustrates the EGA plot of the estimated blood glucose

concentrations compared with the reference blood

glucose concentration values. The EGA is divided into

five zones, A, B, C, D, and E, which are defined as

follows: Zone A, clinically accurate data; Zone B, data

outside 20% of the reference but cannot lead to

inappropriate treatment; Zone C, data may lead to

errors in treatment; Zone D, data lead to erroneous

failures in treatment; and Zone E, data represent the

potential for inappropriate treatment[26]. In our study,

Zone A contained approximately 77.5% of the

Fig. 6. Block diagram of the calibration process using XGBoost.
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estimated blood glucose concentrations, and Zone B

contained the remaining 22.5%. There were no

samples in Zones C, D, or E. Table 3 shows the zonal

accuracy of the EGA plot.

The Bland–Altman analysis shown in Fig. 8

indicates that the estimated blood-glucose

concentration provides a bias of –2.14 ± 22.12 with

limits of agreement (95%, 1.96 SD) ranging from

-45.5 to +41.22. The values of the evaluation metrics

are listed in Table 4.

Zone A B C D E

Sample
percentage

77.5% 22.5% 0% 0% 0%

Table 3. Zonal accuracies of the EGA plot.

Metric MAE RMSE Pearson’s r

Values 16.26 21.22 0.85

Table 4. Evaluation metric values.

(a) (b)
Fig. 7. (a) Fitted scatter plot after XGBoost regression; (b) error grid analysis (EGA) plot for the estimated blood-glucose
concentration.

Fig. 8. Bland–Altman analysis for the estimated blood-glucose concentration using estimated SpO2.
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3.2 Estimation of Blood-Glucose 
Concentration using Reference SpO2

The purpose of estimating blood glucose

concentrations using the reference SpO2 was to assess

the performance variations of the proposed model. If

the estimated blood glucose concentration using the

reference SpO2 is comparable (i.e., the performance

variation is low) to that using the estimated SpO2, then

this proves the potential of our proposed model for

application in real-world scenarios.

The following results were obtained after

calculating the blood glucose concentrations using

equations (21)-(23) with the reference SpO2 values.

Fig. 9(a) depicts the fitted scatter plot after the

calibration of the calculated blood glucose

concentration using XGBoost, and Fig. 9(b) illustrates

the EGA plot of the estimated blood glucose

concentration compared with the reference blood

glucose concentration values. Zone A contains

approximately 82.5% of the estimated blood glucose

concentrations, and Zone B contains the remaining

17.5%. There were no samples in Zones C, D, or E.

Table 5 shows the zonal accuracy of the EGA plot.

The Bland–Altman analysis shown in Fig. 10

indicates that the estimated blood-glucose

concentrations provide a bias of -2.06 ±18.58 with

the limits of agreement (95%, 1.96 SD) ranging from

-38.47 to +34.36. The values of the evaluation metrics

are listed in Table 6.

Zone A B C D E

Sample
percentage

82.5% 17.5% 0% 0% 0%

Table 5. Zonal accuracies of the EGA plot.

Metric MAE RMSE Pearson’s r

Values 15.36 18.69 0.89

Table 6. Evaluation metric values.

3.3 Comparisons with Other Related Works
Comparison analyses between the proposed model

and other established models, as explained in [9] and

[13], are presented in this subsection, considering

identical scenarios for all models. We also present a

performance analysis of the proposed model using

reference SpO2 values. Table 7 presents the evaluation

metrics used for comparison.

In [9], the authors collected PPG signals in

transmissive and reflective modes. As our model was

evaluated with transmissive mode PPG signals, we

considered the transmissive mode PPG signal for

estimating the blood glucose concentration using the

method described in [9]. After segmenting the

individual PPG signals of 40 subjects for about 3 s

for both red (660 nm) and infrared (950 nm)

wavelengths, 17 discriminant features comprising a

mixture of PPG-based physiological features, signal

oriented characteristics, and physical parameters such

(a) (b)
Fig. 9. (a) Fitted scatter plot after XGBoost regression; (b) error grid analysis (EGA) plot for the estimated blood-glucose
concentration.
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as zero-crossing rate (ZCR), autocorrelation, Kaiser–
Teager energy (KTE), power spectral density (PSD),

autoregressive coefficients (ARC), blood oxygen

saturation (SpO2), and body mass index (BMI) were

extracted for use as input features to the model while

setting the measured blood-glucose concentrations as

the targets. The feature vector equation for each frame

f of the PPG signal s can be expressed as follows[9]:

In our recent study[13], we developed a finger model

based on a Monte Carlo simulation of photon

propagation.

From Table 7, it can be observed that the Pearson’s

r of our proposed model outperforms both the random

forest and XGBoost models of [9] under the same

scenario (i.e., with the estimated SpO2). To estimate

blood-glucose concentrations, the models in [9]

require 17 features as input, whereas our proposed

model requires no features, which reduces the

complexity of our proposed model and makes it more

efficient. We also used the estimated SpO2 values to

calculate blood glucose concentrations using the

method described in our previous work[13], where the

value of Pearson’s r was found to be 0.84. After

comparison with other noninvasive in vivo estimation

methods of blood glucose concentrations, our

proposed model showed relatively better accuracy in

terms of Pearson's r value with less computational

complexity, and the proposed method can be used for

research purposes.

Fig. 10. Bland–Altman analysis for the estimated blood-glucose concentrations using reference SpO2.

(31)
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Ⅳ. Discussion

A Beer-Lambert-law-based model for the

noninvasive in vivo estimation of blood glucose

concentration using PPG signals is presented in this

paper. Considering blood as a homogeneous solution

of hemoglobin and glucose, mathematical equations

were derived from the Beer-Lambert law. The

Beer-Lambert-law-based model was developed using

two LED wavelengths: 950 (infrared) and 660 nm

(red). The ratio was then calculated from the PPG

signals for these two wavelengths, and a method for

calculating the blood glucose concentration was

developed. Transmission-mode PPG signals were

collected from 40 subjects, along with their blood

glucose concentrations and SpO2 values as references.

While recording the PPG signals, the subjects were

instructed to remain static and free from external

influences such as movement and electromagnetic

disturbances. Reference blood glucose concentrations

and SpO2 values were collected using the CareSens

II Plus and Schiller Argus OXM Plus devices,

respectively. From the PPG signals, the ratio values

R and were calculated and used to estimate

blood glucose concentrations. A supervised machine

learning model, XGBoost, was used to calibrate the

estimated results, and Pearson’s correlation coefficient

(Pearson’s r) was found to be 0.85. EGA plots and

Bland–Altman analysis are presented to demonstrate

the clinical accuracy of the estimations.

While calculating the blood glucose concentration

using the reference SpO2, Table 6 shows that

Pearson’s r is 0.89, whereas that for our proposed

model with the estimated SpO2 is 0.85. Although the

performance of the proposed model with the reference

SpO2 is slightly better than that with the estimated

SpO2, the variation is very low and can be considered

to have similar estimation results in real-world

scenarios.

Previous studies on the noninvasive estimation of

blood glucose concentrations[6,8-10] have been based on

extracting time-domain, statistical, and signal-oriented

features from PPG signals and using them to estimate

blood glucose concentrations using machine learning

algorithms. Along with the features of PPG signals,

physical parameters, such as BMI, height, weight, and

age, have also been used in these studies, which often

create obstacles for estimating blood glucose

concentrations more accurately. To reduce these

complexities from the features extracted from the PPG

signals and the possibility of inaccurate estimation, we

derived mathematical equations based on the

Beer-Lambert law to estimate the blood glucose

concentration.

Our proposed model is derived by considering a

simple blood vessel model that neglects some effects

such as pressure at the PPG signal measurement site,

skin type, and finger width. However, if these effects

are compensated when designing the model, higher

accuracies may be obtained for the estimated blood

glucose concentrations. Furthermore, our model was

tested using a small dataset with fewer variations

between subjects. Therefore, future studies should

consider the effects of these variabilities using more

diverse datasets, including both hypoglycemic and

hyperglycemic subjects. Despite the limitations of our

proposed model, it performs better than other

compared methods, and at this stage, it can be said

to be suitable for self-monitoring applications of a

person.Figure 1

Model Pearson’s r MAE RMSE
Number of

features
Calibration

Step
Number of
estimators

Random Forest [9] 0.71 16.4 20.1 17 0 1000

XGBoost [9] 0.77 11.4 15.92 17 0 100

MCS based model [13] 0.84 12.16 16.86 1 1 100

Proposed [with estimated SpO2] 0.85 16.26 21.22 0 1 0

Table 7. Performance comparisons with the models in [9] and [13].
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Ⅴ. Conclusion

In this study, we proposed a Beer-Lambert

law-based model for estimating blood glucose

concentrations. In the proposed model, the ratio was

calculated from the PPG signals of the subjects to

obtain the blood glucose concentration using

mathematical equations. XGBoost, a supervised

machine learning model, was used to calibrate the

estimated blood glucose concentrations with reference

concentrations. The results were evaluated using

Pearson’s r, error grid analysis (EGA) plots, and

Bland-Altman analysis. Compared with other notable

noninvasive blood glucose estimation models, our

proposed model was less complex and had a higher

accuracy. The device developed in the current study

can be used as a point-of-care monitoring device on

a daily basis, which can alleviate the patient's burden

of checking blood glucose concentration multiple

times using an invasive device.
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